Apocynin improves diaphragmatic function after endotoxin administration.
نویسندگان
چکیده
Free radicals are known to play an important role in modulating the development of respiratory muscle dysfunction during sepsis. Moreover, neutrophil numbers increase in the diaphragm after endotoxin administration. Whether or not superoxide derived from infiltrating white blood cells contributes to muscle dysfunction during sepsis is, however, unknown. The purpose of the present study was to examine the effect of apocynin, an inhibitor of the superoxide-generating neutrophil NADPH complex, on endotoxin-induced diaphragmatic dysfunction. We studied groups of rats given saline, endotoxin, apocynin, or both endotoxin and apocynin. Animals were killed 18 h after injection, a portion of the diaphragm was used to assess force generation, and the remaining diaphragm was used for determination of 4-hydroxynonenal (a marker of lipid peroxidation) and nitrotyrosine levels (a marker of free radical-mediated protein modification). We found that endotoxin reduced diaphragm force generation and that apocynin partially prevented this decrease [e.g., force in response to 20 Hz was 23 +/- 1 (SE), 12 +/- 2, 23 +/- 1, and 19 +/- 1 N/cm(2), respectively, for saline, endotoxin, apocynin, and endotoxin/apocynin groups; P < 0.001]. Apocynin also prevented endotoxin-mediated increases in diaphragm 4-hydroxynonenal and nitrotyrosine levels (P < 0.01). These data suggest that neutrophil-derived free radicals contribute to diaphragmatic dysfunction during sepsis.
منابع مشابه
Apocynin improves endothelial function and prevents the development of hypertension in fructose fed rat
BACKGROUND AND OBJECTIVES Exaggerated production of superoxide and inactivation of nitric oxide have been implicated in pathogenesis of hypertension. NAD(P)H oxidase is one of the major source of reactive oxygen species in vasculature. In the present study, we aimed to determine the effect of chronic administration of Apocynin an NAD(P)H oxidase inhibitor on endothelial function and hypertensio...
متن کاملApocynin preserves glutamatergic neurons in the basolateral amygdala in mice with neonatal sevoflurane exposure
BACKGROUND Neonatal exposure to anesthetics induces neuronal apoptosis and long-term cognitive dysfunction in rodents. We showed that the nicotinamide adenine dinucleotide phosphate-oxidase inhibitor apocynin not only reduces neurotoxicity by decreasing superoxide levels and preventing mitochondrial dysfunction but also improves long-term memory impairment in neonatal mice exposed to sevofluran...
متن کاملEffect of proteasome inhibitors on endotoxin-induced diaphragm dysfunction.
Infections produce severe respiratory muscle dysfunction. It is known that the proteasome proteolytic system is activated in skeletal muscle in sepsis, and it has been postulated that this degradative pathway is responsible for inducing skeletal muscle weakness and wasting. The objective of this study was to determine if administration of proteasomal inhibitors (MG132, epoxomicin, bortezomib) c...
متن کاملExpression of the inducible nitric oxide synthase gene in diaphragm and skeletal muscle.
Nitric oxide (NO) is a pluripotent molecule that can be secreted by skeletal muscle through the activity of the neuronal constitutive isoform of NO synthase. To determine whether skeletal muscle and diaphragm might also express the macrophage-inducible form of NO synthase (iNOS) during provocative states, we examined tissue from mice at serial times after intravenous administration of Escherich...
متن کاملCaspase activation contributes to endotoxin-induced diaphragm weakness.
Infections produce significant respiratory muscle weakness, but the mechanisms by which inflammation reduces muscle force remain incompletely understood. Recent work suggests that caspase 3 releases actin and myosin from the contractile protein lattice, so we postulated that infections may reduce skeletal muscle force by activating caspase 3. The present experiments were designed to test this h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 87 2 شماره
صفحات -
تاریخ انتشار 1999